Text preview for : Mosfet IRF.pdf part of Texas Instruments Mosfets IRFs Información muy completa de estos Transistores de Efecto de Campo (FET)



Back to : Mosfet IRF.part01.rar | Home

Index of /ds/IR/
Name Last modified Size Description

Parent Directory IRF340.pdf IRF510A.pdf IRF520A.pdf IRF530A.pdf IRF540A.pdf IRF550A.pdf IRF610A.pdf IRF614.pdf IRF614A.pdf IRF614S.pdf IRF620A.pdf IRF624.pdf IRF624A.pdf IRF630A.pdf IRF634.pdf IRF634A.pdf IRF634S.pdf IRF640A.pdf IRF644.pdf IRF644A.pdf IRF650A.pdf IRF654.pdf IRF654A.pdf 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Feb-00 00:00 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 232K 247K 243K 254K 256K 261K 250K 242K 229K 240K 256K 246K 232K 256K 237K 224K 234K 260K 237K 226K 257K 482K 2M

IRF710.pdf IRF710A.pdf IRF720.pdf IRF720A.pdf IRF730.pdf IRF730A.pdf IRF740.pdf IRF740A.pdf IRF750.pdf IRF750A.pdf IRF820.pdf IRF820A.pdf IRF820S.pdf IRF830.pdf IRF830A.pdf IRF830S.pdf IRF840.pdf IRF840A.pdf IRF840S.pdf IRFI510A.pdf IRFI520A.pdf IRFI530A.pdf IRFI540A.pdf IRFI550A.pdf IRFI610A.pdf IRFI614A.pdf IRFI620A.pdf

22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09

236K 223K 237K 224K 239K 226K 242K 228K 243K 230K 239K 226K 237K 258K 220K 232K 236K 223K 234K 253K 252K 259K 261K 266K 255K 230K 261K

IRFI624A.pdf IRFI630A.pdf IRFI634A.pdf IRFI640A.pdf IRFI644A.pdf IRFI710A.pdf IRFI720A.pdf IRFI730A.pdf IRFI740A.pdf IRFI820A.pdf IRFI830A.pdf IRFI840A.pdf IRFIZ14A.pdf IRFIZ24A.pdf IRFIZ34A.pdf IRFIZ44A.pdf IRFM014A.pdf IRFM110A.pdf IRFM120A.pdf IRFM210A.pdf IRFM220A.pdf IRFP140A.pdf IRFP150A.pdf IRFP240A.pdf IRFP244.pdf IRFP244A.pdf IRFP250A.pdf

22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09

233K 261K 224K 265K 227K 224K 225K 227K 229K 227K 222K 224K 217K 220K 225K 228K 258K 263K 268K 266K 273K 256K 261K 263K 472K 1000K 256K

IRFP254.pdf IRFP254A.pdf IRFP340P.pdf IRFP350.pdf IRFP350P.pdf IRFP440.pdf IRFP440A.pdf IRFP450.pdf IRFP450A.pdf IRFP460.pdf IRFR014.pdf IRFR014A.pdf IRFR024A.pdf IRFR034.pdf IRFR034A.pdf IRFR110A.pdf IRFR120A.pdf IRFR130A.pdf IRFR210A.pdf IRFR214.pdf IRFR214A.pdf IRFR220A.pdf IRFR224.pdf IRFR224A.pdf IRFR230A.pdf IRFR234.pdf IRFR234A.pdf

22-Dec-99 00:09 16-Apr-99 13:01 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 30-Dec-99 00:00 22-Dec-99 00:09 16-Apr-99 13:01

244K 1M 224K 240K 232K 232K 224K 238K 230K 240K 219K 215K 217K 229K 225K 255K 256K 261K 257K 233K 229K 255K 235K 231K 257K 222K 218K

IRFR310.pdf IRFR310A.pdf IRFR320.pdf IRFR320A.pdf IRFR330.pdf IRFR330A.pdf IRFR420.pdf IRFR420A.pdf IRFR430.pdf IRFR430A.pdf IRFR9024.pdf IRFR_U110A.pdf IRFR_U120A.pdf IRFR_U130A.pdf IRFR_U210A.pdf IRFR_U220A.pdf IRFR_U230A.pdf IRFS140A.pdf IRFS150A.pdf IRFS240A.pdf IRFS244.pdf IRFS244A.pdf IRFS250A.pdf IRFS254.pdf IRFS254A.pdf IRFS340.pdf IRFS340A.pdf

22-Dec-99 00:09 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 30-Dec-99 00:00 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01

226K 222K 227K 223K 231K 227K 228K 224K 224K 220K 379K 255K 256K 261K 257K 255K 257K 256K 259K 258K 234K 226K 255K 243K 235K 231K 222K

IRFS350.pdf IRFS350A.pdf IRFS440.pdf IRFS440A.pdf IRFS450.pdf IRFS450A.pdf IRFS460.pdf IRFS510A.pdf IRFS520A.pdf IRFS530A.pdf IRFS540A.pdf IRFS550A.pdf IRFS610A.pdf IRFS620A.pdf IRFS630A.pdf IRFS640A.pdf IRFS650A.pdf IRFS710A.pdf IRFS720A.pdf IRFS730A.pdf IRFS740A.pdf IRFS750A.pdf IRFS820A.pdf IRFS830A.pdf IRFS840A.pdf IRFSZ14A.pdf IRFSZ24A.pdf

22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 09-Jan-00 00:00 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09

249K 231K 231K 222K 238K 229K 240K 253K 251K 261K 259K 264K 257K 259K 261K 264K 258K 260K 258K 264K 263K 274K 260K 255K 264K 252K 256K

IRFSZ34A.pdf IRFSZ44A.pdf IRFU014A.pdf IRFU024A.pdf IRFU034A.pdf IRFU110A.pdf IRFU120A.pdf IRFU130A.pdf IRFU210A.pdf IRFU214A.pdf IRFU220A.pdf IRFU224A.pdf IRFU230A.pdf IRFU234A.pdf IRFU310A.pdf IRFU320A.pdf IRFU330A.pdf IRFU410A.pdf IRFU420A.pdf IRFU430A.pdf IRFW20A.pdf IRFW510A.pdf IRFW520A.pdf IRFW530A.pdf IRFW540A.pdf IRFW550A.pdf IRFW610A.pdf

22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 30-Dec-99 00:00 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 16-Apr-99 13:01 03-Dec-99 15:46 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09

262K 266K 215K 217K 225K 255K 256K 261K 257K 229K 255K 231K 257K 218K 222K 223K 227K 190K 224K 220K 261K 253K 252K 259K 261K 266K 255K

IRFW614A.pdf IRFW620A.pdf IRFW624A.pdf IRFW630A.pdf IRFW634A.pdf IRFW640A.pdf IRFW644A.pdf IRFW710A.pdf IRFW710S.pdf IRFW720A.pdf IRFW720S.pdf IRFW730A.pdf IRFW730S.pdf IRFW740A.pdf IRFW740S.pdf IRFW820A.pdf IRFW830A.pdf IRFW840A.pdf IRFWZ14.pdf IRFWZ14A.pdf IRFWZ24.pdf IRFWZ24A.pdf IRFWZ34.pdf IRFWZ34A.pdf IRFWZ44.pdf IRFWZ44A.pdf IRFW_I510A.pdf

16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 22-Dec-99 00:09 16-Apr-99 13:01 16-Apr-99 13:01 16-Apr-99 13:01 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09

230K 261K 233K 261K 224K 265K 227K 224K 234K 225K 235K 227K 237K 229K 239K 227K 222K 224K 227K 217K 436K 220K 235K 225K 238K 228K 253K

IRFW_I520A.pdf IRFW_I530A.pdf IRFW_I540A.pdf IRFW_I550A.pdf IRFW_I610A.pdf IRFW_I620A.pdf IRFW_I630A.pdf IRFW_I640A.pdf IRFW_IZ24A.pdf IRFZ14.pdf IRFZ14A.pdf IRFZ24.pdf IRFZ24A.pdf IRFZ34.pdf IRFZ34A.pdf IRFZ44.pdf IRFZ44A.pdf IRL510.pdf IRL510A.pdf IRL520A.pdf IRL520S.pdf IRL530.pdf IRL530A.pdf IRL540.pdf IRL540A.pdf IRL610.pdf IRL610A.pdf

22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09

252K 259K 261K 266K 255K 261K 261K 265K 220K 229K 216K 433K 219K 237K 227K 240K 227K 236K 223K 227K 238K 241K 228K 238K 225K 248K 235K

IRL610S.pdf IRL620.pdf IRL620A.pdf IRL620S.pdf IRL630.pdf IRL630A.pdf IRL630S.pdf IRL640.pdf IRL640A.pdf IRL640S.pdf IRLI510A.pdf IRLI530A.pdf IRLI540A.pdf IRLI610A.pdf IRLI620A.pdf IRLI630A.pdf IRLI640A.pdf IRLII520A.pdf IRLR110A.pdf IRLR120A.pdf IRLR120N.pdf IRLR130A.pdf IRLR210.pdf IRLR210A.pdf IRLR220.pdf IRLR220A.pdf IRLR230.pdf

22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 00:00 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09

245K 235K 222K 232K 237K 224K 234K 239K 226K 237K 223K 230K 226K 236K 222K 225K 227K 995K 222K 225K 229K 226K 237K 234K 224K 220K 233K

IRLR230A.pdf IRLU110A.pdf IRLU120A.pdf IRLU130A.pdf IRLU210A.pdf IRLU220A.pdf IRLU230A.pdf IRLW510A.pdf IRLW520A.pdf IRLW530A.pdf IRLW540A.pdf IRLW610A.pdf IRLW620A.pdf IRLW630A.pdf IRLW640A.pdf

22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 16-Apr-99 00:00 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09 22-Dec-99 00:09

229K 222K 225K 226K 234K 220K 229K 223K 995K 230K 226K 236K 222K 225K 227K

$GYDQFHG 3RZHU 026)(7
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area Lower Leakage Current: 10µA (Max.) @ VDS = 400V Lower RDS(ON): 0.437 (Typ.)
1 2 3

IRF340
BVDSS = 400 V RDS(on) = 0.55 ID = 11 A
TO-3P

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Continuous Drain Current (TC=25°C) Continuous Drain Current (TC=100°C) Drain Current-Pulsed Gate-to-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Total Power Dissipation (TC=25°C) Linear Derating Factor Operating Junction and Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8 from case for 5-seconds
(2) (1) (1) (3) (1)

Value 400 11 7 44 ±30 553 11 16.2 4.0 162 1.3 - 55 to +150

Units V A A V mJ A mJ V/ns W W/°C

°C 300

Thermal Resistance
Symbol RJC RCS RJA Characteristic Junction-to-Case Case-to-Sink Junction-to-Ambient Typ. -0.24 -Max. 0.77 -40 °C/W Units

Rev. B

©1999 Fairchild Semiconductor Corporation

IRF340
Electrical Characteristics (TC=25°C unless otherwise specified)
Symbol BVDSS BV/TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd Characteristic Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coeff. Gate Threshold Voltage Gate-Source Leakage , Forward Gate-Source Leakage , Reverse Drain-to-Source Leakage Current Static Drain-Source On-State Resistance Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain ( Miller ) Charge Min. Typ. Max. Units 400 -2.0 -----------------0.50 ------8.01 175 80 18 21 78 28 58 8.1 31.3 --4.0 100 -100 10 100 0.55 -205 95 50 55 170 65 75 --nC ns µA V V nA

1&+$11(/ 32:(5 026)(7

Test Condition VGS=0V,ID=250µA

V/°C ID=250µA VGS=30V VGS=-30V VDS=400V

See Fig 7

VDS=5V,ID=250µA

VDS=320V,TC=125°C VGS=10V,ID=5.5A VDS=50V,ID=5.5A
(4) (4)

1180 1530 pF

VGS=0V,VDS=25V,f =1MHz

See Fig 5
VDD=200V,ID=10A, RG=9.1

See Fig 13
VDS=320V,VGS=10V, ID=10A

(4) (5)

See Fig 6 & Fig 12 (4) (5)

Source-Drain Diode Ratings and Characteristics
Symbol IS ISM VSD trr Qrr Characteristic Continuous Source Current Pulsed-Source Current Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
(1) (4)

Min. Typ. Max. Units --------315 2.84 11 44 1.5 --A V ns µC

Test Condition Integral reverse pn-diode in the MOSFET TJ=25°C,IS=11A,VGS=0V TJ=25°C,IF=10A diF/dt=100A/µs
(4)

Notes; (1) Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature (2) L=8mH, IAS=11A, VDD=50V, RG=27, Starting TJ =25°C (3) ISD 10A, di/dt 170A/µs, VDD BV DSS , Starting TJ =25°C (4) Pulse Test: Pulse Width = 250µs, Duty Cycle 2% (5) Essentially Independent of Operating Temperature

1&+$11(/ 32:(5 026)(7
Fig 1. Output Characteristics
VGS 15 V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V Top :

IRF340
Fig 2. Transfer Characteristics

ID , Drain Current [A]

ID , Drain Current [A]

11 0

11 0

1 0 oC 5 10 0 2 oC 5 @N ts : oe 1 V =0 V . GS 2 V =5 V . DS 0 us et 3 2 0 µs P l e T s . 5 6 8 1 0

10 0

@ Nt s: oe 1 2 0 µs P l e T s . 5 us et 2 T = 2 oC . C 5 1 -1 -1 0 1 0 10 0 11 0

- 5 oC 5 1 -1 0 2 4

VDS , Drain-Source Voltage [V]

VGS , Gate-Source Voltage [V]

Fig 3. On-Resistance vs. Drain Current
12 .

Fig 4. Source-Drain Diode Forward Voltage IDR , R rs D in Cu ent [A] eve e ra rr

RDS(on) , [ ] Dr Sour O sis e ain- ce n-Re tanc

09 .

11 0

V =1 V 0 GS

06 .

10 0 @N ts : oe 1 V =0 V . GS 2 2 0 µs P l e T s . 5 us et 08 . 10 . 12 . 14 .

V =2 V 0 GS 03 . @ Nt :T =2 C oe J 5 00 . 0 1 0 2 0 3 0 4 0
o

1 0 oC 5 2 C 5 1 -1 0 02 . 04 . 06 .
o

I , Dra C nt [A] in urre D Fig 5. Capacitance vs. Drain-Source Voltage
20 00 C = C + C (C = so td ) iss gs gd ds h r e C =C +C oss ds gd C =C rss gd 10 50

VSD , S ce ai Vol ge [ our -Dr n ta V] Fig 6. Gate Charge vs. Gate-Source Voltage
V =8 V 0 DS 1 0

Capacitance [pF]

C iss

VGS , Gate-Source Voltage [V]

V =2 0V 0 DS V =3 0V 2 DS

10 00 @ Nt s: oe 1 V =0 V . GS 2 f =1 M z . H

5

C oss 50 0 C rss

@N ts :I =1 . A oe 00 D 0 0 1 0 2 0 3 0 4 0 5 0 6 0

00 1 0

1 0

1

VDS , Drain-Source Voltage [V]

QG , Total Gate Charge [nC]

IRF340
Fig 7. Breakdown Voltage vs. Temperature
12 . 30 .

1&+$11(/ 32:(5 026)(7
Fig 8. On-Resistance vs. Temperature

BVDSS , (Normalized) Drain-Source Breakdown Voltage

11 .

RDS(on) , (Normalized) Drain-Source On-Resistance

25 .

20 .

10 .

15 .

10 . @N ts : oe 1 V =1 V . GS 0 2 I =5 0A . D . -0 5 -5 2 0 2 5 5 0 7 5 10 0 15 2 10 5 15 7

09 .

@ Nt s: oe 1 V =0 V . GS 2 I = 2 0 µA . D 5 -0 5 -5 2 0 2 5 5 0 7 5 10 0
o

05 .

08 . -5 7

15 2

10 5

15 7

00 . -5 7

TJ , Junction Temperature [ C]

TJ , Junction Temperature [oC]

Fig 9. Max. Safe Operating Area
12 0 O ea in i T i Ae pr to n hs ra i L m t d b R DS(on) s i ie y 1 µs 0 1 0 µs 0 11 0 1 m 0 s D C 1m s

Fig 10. Max. Drain Current vs. Case Temperature
1 2

ID , Drain Current [A]

ID , Drain Current [A]
13 0

1 0

8

6

10 0

4

@ Nt s: oe 1 T = 2 oC . C 5 2 T = 1 0 oC . J 5 3 Sn l P le . ig e u s

2

1 -1 0 0 1 0

11 0

12 0

0 2 5

5 0

7 5

10 0

15 2

10 5

VDS , Drain-Source Voltage [V]

Tc , Case Temperature [oC]

Fig 11. Thermal Response
Thermal Response
100

D=0.5 @ Notes : 1. Z J C (t)=0.77 o C/W Max. 2. Duty Factor, D=t1 /t2 3. TJ M -TC =PD M *Z J C (t)
PDM

0.2 10- 1 0.1 0.05

Z JC(t) ,

0.02 0.01 10- 2 10- 5

single pulse

t1 t2



10- 4

10- 3

10- 2

10- 1

100

101

t1 , Square Wave Pulse Duration

[sec]

1&+$11(/ 32:(5 026)(7
Fig 12. Gate Charge Test Circuit & Waveform

IRF340

Current Regulator
50k 12V 200nF 300nF

Same Type as DUT

VGS Qg
10V

VDS VGS DUT
3mA

Qgs

Qgd

R1
Current Sampling (IG) Resistor

R2
Current Sampling (ID) Resistor

Charge

Fig 13. Resistive Switching Test Circuit & Waveforms

RL Vout Vin RG DUT Vin 10V
td(on) t on tr td(off) t off tf 10%

Vout VDD
( 0.5 rated VDS )

90%

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

LL VDS
Vary tp to obtain required peak ID

BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD BVDSS IAS C VDD VDD
tp

ID

RG DUT 10V
tp

ID (t) VDS (t) Time

IRF340
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

1&+$11(/ 32:(5 026)(7

DUT

+ VDS --

IS L Driver RG VGS
Same Type as DUT

VGS

VDD

dv/dt controlled by RG IS controlled by Duty Factor D

VGS ( Driver )

Gate Pulse Width D = -------------------------Gate Pulse Period

10V

IFM , Body Diode Forward Current

IS ( DUT ) IRM

di/dt

Body Diode Reverse Current

VDS ( DUT )

Body Diode Recovery dv/dt

Vf

VDD

Body Diode Forward Voltage Drop

TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E2CMOSTM FACTTM FACT Quiet SeriesTM FAST® FASTrTM GTOTM HiSeCTM
DISCLAIMER

ISOPLANARTM MICROWIRETM POPTM PowerTrenchTM QSTM Quiet SeriesTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 TinyLogicTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Preliminary

First Production

No Identification Needed

Full Production

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area 175 C Operating Temperature Lower Leakage Current : 10 µ A (Max.) @ VDS = 100V Lower RDS(ON) : 0.289 (Typ.)


IRF510A
BVDSS = 100 V RDS(on) = 0.4 ID = 5.6 A
TO-220

1 2 3

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Continuous Drain Current (TC=25 C ) Continuous Drain Current (TC=100 C) Drain Current-Pulsed Gate-to-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Total Power Dissipation (TC=25 C ) Linear Derating Factor Operating Junction and Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8 " from case for 5-seconds


Value 100 5.6 4
1 O

Units V A A V mJ A mJ V/ns W W/ C


20 + 20 _ 63 5.6 3.3 6.5 33 0.22 - 55 to +175


O 1 O 1 O 3 O
2

C

300

Thermal Resistance
Symbol R JC RCS RJA Characteristic Junction-to-Case Case-to-Sink Junction-to-Ambient Typ. -0.5 -Max. 4.51 -62.5


Units

C /W

Rev. B

©1999 Fairchild Semiconductor Corporation

IRF510A


N-CHANNEL POWER MOSFET

Electrical Characteristics (TC=25 C unless otherwise specified)
Symbol BVDSS BV/ TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd Characteristic Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coeff. Gate Threshold Voltage Gate-Source Leakage , Forward Gate-Source Leakage , Reverse Drain-to-Source Leakage Current Static Drain-Source On-State Resistance Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain("Miller") Charge Min. Typ. Max. Units 100 -2.0 -----------------0.11 ------3.49 190 55 21 10 14 28 18 8.5 1.6 4.1 --4.0 100 -100 10 100 0.4 -240 65 25 30 40 70 50 12 --nC ns pF µA V


Test Condition VGS=0V,ID=250 A See Fig 7 VDS=5V,ID=250 µ A VGS=20V VGS=-20V VDS=100V VDS=80V,TC=150 C VGS=10V,ID=2.8A VDS=40V,ID=2.8A
4 O 4 O


V/ C ID=250µA V nA

VGS=0V,VDS=25V,f =1MHz See Fig 5 VDD=50V,ID=5.6A, RG=24 See Fig 13 VDS=80V,VGS=10V, ID=5.6A See Fig 6 & Fig 12
4 5 OO 4 5 OO

Source-Drain Diode Ratings and Characteristics
Symbol IS ISM VSD trr Qrr Characteristic Continuous Source Current Pulsed-Source Current Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
1 O
4 O

Min. Typ. Max. Units --------85 0.23 5.6 20 1.5 --A V ns µC

Test Condition Integral reverse pn-diode in the MOSFET TJ=25 C ,IS=5.6A,VGS=0V TJ=25 C ,IF=5.6A diF/dt=100A/µ s
4 O


Notes ; 1 Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature O 2 O L=3mH, I AS=5.6A, VDD=25V, RG=27 , Starting T J =25oC o 3 _ _ _ O ISD < 5.6A, di/dt < 250A/ µs, V DD < BVDSS , Starting T J =25 C _ s, 4 O Pulse Test : Pulse Width = 250 µ Duty Cycle <2% 5 Essentially Independent of Operating Temperature O

N-CHANNEL POWER MOSFET
Fig 1. Output Characteristics
VGS

IRF510A
Fig 2. Transfer Characteristics
[A] ID , Drain Current
101

[A]

101 V 0

15V : Top 1 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V

ID , Drain Current

175 oC

100

100 25 oC @ Notes : 1. V = 0 V GS 2. V = 40 V DS 3. 250 µs Pulse Test 6 8 10

@ Notes : 1. 250 µs Pulse Test 2. T = 25 oC C 10-1 10-1 100 101

- 55 oC 10-1

2

4

VDS , Drain-Source Voltage [V] [A]

VGS , Gate-Source Voltage [V]

Fig 3. On-Resistance vs. Drain Current
RDS(on) , [ ] Drain-Source On-Resistance
08 .

Fig 4. Source-Drain Diode Forward Voltage
11 0

06 .

V = 10 V GS

04 .

IDR , Reverse Drain Current

10 0

02 .

VGS = 20 V

1 5 oC 7 2 oC 5 1 -1 0 04 . 06 . 08 . 10 . 12 .

@ N t : TJ = 2 oC oe 5 00 . 0 5 10 15 2 0

@Nts: oe 1 VGS = 0 V . 2 2 0 µs P l e T s . 5 us et 14 . 16 . 18 . 20 .

ID , Drain Current [A]

VSD , Source-Drain Voltage [V]

Fig 5. Capacitance vs. Drain-Source Voltage
30 5 Ciss= Cgs+ C ( Cds= s o t d ) hre gd Coss= Cds+ C gd

Fig 6. Gate Charge vs. Gate-Source Voltage
[V]
0 VDS = 2 V 1 0 VDS = 5 V 0 VDS = 8 V 0

[pF]

C iss

20 1

C oss

VGS , Gate-Source Voltage

20 8

Crss= Cgd

Capacitance

10 4 C rss 70

@Nts: oe 1 VGS = 0 V . 2 f=1Mz . H

5

@Nts:I =56A oe . D 0 0 2 4 6 8 1 0

00 10

1 10

VDS , Drain-Source Voltage [V]

QG , Total Gate Charge [nC]

IRF510A
BVDSS , (Normalized) Drain-Source Breakdown Voltage

N-CHANNEL POWER MOSFET
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized) Drain-Source On-Resistance
3.0

Fig 7. Breakdown Voltage vs. Temperature
1.2

2.5

1.1

2.0

1.0

1.5

1.0 @ Notes : 1. V = 10 V GS 2. I = 2.8 A D 0.0 -75

0.9

@ Notes : 1. V = 0 V GS 2. I = 250 µA D

0.5

0.8 -75

-50

-25

0

25

50

75

100

125

150

175

200

-50

-25

0

25

50

75

100

125

150

175

200

TJ , Junction Temperature [ oC]

TJ , Junction Temperature [ oC]

Fig 9. Max. Safe Operating Area
2 10

Fig 10. Max. Drain Current vs. Case Temperature
6

[A]

Operation in This Area is Limited by R DS(on) 100 µs 1 ms 10 ms DC
0 10

[A]
5

ID , Drain Current

1 10

ID , Drain Current

4

3

2

@ Notes : 1. T = 25 oC C 2. T = 175 oC J 3. Single Pulse 10-1 0 10
1 10

1

102

0 25

50

75

100

125

150

175

VDS , Drain-Source Voltage [V]

Tc , Case Temperature [ oC]

Fig 11. Thermal Response
Thermal Response

D=0.5 100 @ Notes : 1. Z J C (t)=4.51 3. TJ M -TC =PD M *Z

0.2 0.1 0.05

o

C/W Max. (t)

2. Duty Factor, D=t /t2 1
J C

Z JC(t) ,

10- 1

0.02 0.01

PDM
single pulse

t1 t2



10- 5

10- 4

10- 3

10- 2

10- 1

100

101

t 1 , Square Wave Pulse Duration

[sec]

N-CHANNEL POWER MOSFET
Fig 12. Gate Charge Test Circuit & Waveform

IRF510A

" Current Regulator "
50K 12V 200nF 300nF

Same Type as DUT

VGS Qg
10V

VDS VGS DUT
3mA

Qgs

Qgd

R1
Current Sampling (I G) Resistor

R2
Current Sampling (I D) Resistor

Charge

Fig 13. Resistive Switching Test Circuit & Waveforms

RL Vout Vin RG DUT 10V Vin
10%

Vout VDD
( 0.5 rated V DS )

90%

td(on) t on

tr

td(off) t off

tf

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

LL VDS
Vary tp to obtain required peak ID

BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD BVDSS IAS C VDD VDD
tp

ID

RG DUT 10V
tp

ID (t) VDS (t) Time

IRF510A

N-CHANNEL POWER MOSFET
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

DUT

+ VDS --

IS L Driver RG VGS
Same Type as DUT

VGS

VDD

· dv/dt controlled by "RG" · IS controlled by Duty Factor "D"

VGS ( Driver )

Gate Pulse Width D = -------------------------Gate Pulse Period

10V

IFM , Body Diode Forward Current

IS ( DUT ) IRM

di/dt

Body Diode Reverse Current

VDS ( DUT )

Body Diode Recovery dv/dt

Vf

VDD

Body Diode Forward Voltage Drop

TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E2CMOSTM FACTTM FACT Quiet SeriesTM FAST® FASTrTM GTOTM HiSeCTM
DISCLAIMER

ISOPLANARTM MICROWIRETM POPTM PowerTrenchTM QSTM Quiet SeriesTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 TinyLogicTM

UHCTM VCXTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Preliminary

First Production

No Identification Needed

Full Production

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area 175 C Operating Temperature Lower Leakage Current : 10 µ A (Max.) @ VDS = 100V Lower RDS(ON) : 0.155 (Typ.)


IRF520A
BVDSS = 100 V RDS(on) = 0.2 ID = 9.2 A
TO-220

1 2 3

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Continuous Drain Current (TC=25 C) Continuous Drain Current (TC=100 C ) Drain Current-Pulsed Gate-to-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Total Power Dissipation (TC=25 C ) Linear Derating Factor Operating Junction and Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5-seconds


Value 100 9.2 6.5
1 O
2 O 1 O 1 O 3 O

Units V A A V mJ A mJ V/ns W W/ C


37 + 20 _ 113 9.2 4.5 6.5 45 0.3 - 55 to +175


C

300

Thermal Resistance
Symbol R JC R CS R JA Characteristic Junction-to-Case Case-to-Sink Junction-to-Ambient Typ. -0.5 -Max. 3.31 -62.5


Units

C /W

Rev. B

©1999 Fairchild Semiconductor Corporation

IRF520A


N-CHANNEL POWER MOSFET

Electrical Characteristics (TC=25 C unless otherwise specified)
Symbol BVDSS BV/ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd Characteristic Drain-Source Breakdown Voltage TJBreakdown Voltage Temp. Coeff. Gate Threshold Voltage Gate-Source Leakage , Forward Gate-Source Leakage , Reverse Drain-to-Source Leakage Current Static Drain-Source On-State Resistance Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain("Miller") Charge Min. Typ. Max. Units 100 -2.0 -----------------0.12 ------6.35 370 95 38 14 14 36 28 16 2.7 7.8 --4.0 100 -100 10 100 0.2 -480 110 45 40 40 90 70 22 --nC ns pF µ A V Test Condition VGS=0V,ID=250 µ A See Fig 7 V/ C ID=250µ A VDS=5V,ID=250 µ A V


nA

VGS=20V VGS=-20V VDS=100V VDS=80V,TC=150 C VGS=10V,ID=4.6A VDS=40V,ID=4.6A
4 O 4 O


VGS=0V,VDS=25V,f =1MHz See Fig 5 VDD=50V,ID=9.2A, RG=18 See Fig 13 VDS=80V,VGS=10V, ID=9.2A See Fig 6 & Fig 12
4 5 OO 4 5 OO

Source-Drain Diode Ratings and Characteristics
Symbol IS ISM VSD trr Qrr Characteristic Continuous Source Current Pulsed-Source Current Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
1 O 4 O

Min. Typ. Max. Units --------98 0.34 9.2 37 1.5 --A V ns µ C

Test Condition Integral reverse pn-diode in the MOSFET TJ=25 C ,IS=9.2A,VGS=0V TJ=25 C ,IF=9.2A diF/dt=100A/ µ s
4 O


1 O 2 O 3 O 4 O 5 O

Notes ; Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature o L=2mH, IAS=9.2A, V DD=25V, R G=27 , Starting T J =25 C _ < 300A/µs, V DD < BVDSS , Starting T J =25 oC ISD < 9.2A, di/dt _ _ _ Pulse Test : Pulse Width = 250 µ Duty Cycle <2% s, Essentially Independent of Operating Temperature

N-CHANNEL POWER MOSFET
Fig 1. Output Characteristics
VGS 15V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V

IRF520A
Fig 2. Transfer Characteristics
[A]
101

[A] ID , Drain Current
101

Top :

ID , Drain Current

175 oC 100 25 oC @ Notes : 1. V = 0 V GS 2. V = 40 V DS - 55 oC 3. 250 µs Pulse Test 6 8 10 10-1

10

0

@ Notes : 1. 250 µs Pulse Test 2. T = 25 oC C 10-1 100 101

2

4

VDS , Drain-Source Voltage [V] [A]

VGS , Gate-Source Voltage [V]

Fig 3. On-Resistance vs. Drain Current
RDS(on) , [ ] Drain-Source On-Resistance
04 .

Fig 4. Source-Drain Diode Forward Voltage

IDR , Reverse Drain Current

03 .

VGS = 10 V

11 0

02 .

10 0

01 .

V = 20 V GS

1 5 oC 7 2 oC 5 1 -1 0 04 . 06 . 08 . 10 . 12 . 14 .

@ N t : TJ = 2 C oe 5 00 . 0 10 20 30 4 0

o

@Nts: oe 1 VGS = 0 V . 2 2 0 µs P l e T s . 5 us et 16 . 18 . 20 . 22 .

ID , Drain Current [A]

VSD , Source-Drain Voltage [V]

Fig 5. Capacitance vs. Drain-Source Voltage
60 0 C iss Ciss= Cgs+ C ( Cds= s o t d ) hre gd Coss= Cds+ C gd Crss= Cgd

Fig 6. Gate Charge vs. Gate-Source Voltage
[V]
VDS = 2 V 0 1 0 V =5 V 0 DS V =8 V 0 DS

[pF]

Capacitance

40 0 C oss

VGS , Gate-Source Voltage

20 0 C rss

@Nts: oe 1 VGS = 0 V . 2 f=1Mz . H

5

@Nts:I =92A oe . D 0 0 5 1 0 1 5 2 0

00 10

10

1

VDS , Drain-Source Voltage [V]

QG , Total Gate Charge [nC]

IRF520A
BVDSS , (Normalized) Drain-Source Breakdown Voltage

N-CHANNEL POWER MOSFET
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized) Drain-Source On-Resistance
3.0

Fig 7. Breakdown Voltage vs. Temperature
1.2

2.5

1.1

2.0

1.0

1.5

1.0 @ Notes : 1. V = 10 V GS 2. I = 4.6 A D

0.9

@ Notes : 1. V = 0 V GS 2. I = 250 µA D

0.5

0.8 -75

-50

-25

0

25

50

75

100

TJ , Junction Temperature [ C]

125 o

150

175

200

0.0 -75

-50

-25

0

25

50

75

100

125

150

175

200

TJ , Junction Temperature [ oC]

Fig 9. Max. Safe Operating Area
[A]
2 10

Fig 10. Max. Drain Current vs. Case Temperature
10

Operation in This Area is Limited by R DS(on)

[A]
100 µs 1 ms 10 ms

ID , Drain Current

1 10

ID , Drain Current
102

8

6

DC
0 10

4

@ Notes : 1. T = 25 oC C 2. T = 175 oC J 3. Single Pulse

2

10-1 0 10

1 10

0 25

50

75

100

125

150

175

VDS , Drain-Source Voltage [V]

Tc , Case Temperature [ oC]

Fig 11. Thermal Response
Thermal Response

D=0.5 100 0.2 0.1 0.05 @ Notes : 1. Z J C (t)=3.31
o C/W

Max.

2. Duty Factor, D=t /t2 1 3. TJ M -TC =PD M *Z J C (t)

ZJC(t) ,

10- 1

0.02 0.01 single pulse

PDM t1 t2

10- 5

10- 4

10- 3

10- 2

10- 1

100

101

t 1 , Square Wave Pulse Duration

[sec]

N-CHANNEL POWER MOSFET
Fig 12. Gate Charge Test Circuit & Waveform

IRF520A

" Current Regulator "
50K 12V 200nF 300nF

Same Type as DUT

VGS Qg
10V

VDS VGS DUT
3mA

Qgs

Qgd

R1
Current Sampling (I G) Resistor

R2
Current Sampling (I D) Resistor

Charge

Fig 13. Resistive Switching Test Circuit & Waveforms

RL Vout Vin RG DUT 10V Vin
10%

Vout VDD
( 0.5 rated V DS )

90%

td(on) t on

tr

td(off) t off

tf

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

LL VDS
Vary tp to obtain required peak ID

BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD BVDSS IAS C VDD VDD
tp

ID

RG DUT 10V
tp

ID (t) VDS (t) Time

IRF520A

N-CHANNEL POWER MOSFET
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

DUT

+ VDS --

IS L Driver RG VGS
Same Type as DUT

VGS

VDD

· dv/dt controlled by "RG" · IS controlled by Duty Factor "D"

VGS ( Driver )

Gate Pulse Width D = -------------------------Gate Pulse Period

10V

IFM , Body Diode Forward Current

IS ( DUT ) IRM

di/dt

Body Diode Reverse Current

VDS ( DUT )

Body Diode Recovery dv/dt

Vf

VDD

Body Diode Forward Voltage Drop

TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E2CMOSTM FACTTM FACT Quiet SeriesTM FAST® FASTrTM GTOTM HiSeCTM
DISCLAIMER

ISOPLANARTM MICROWIRETM POPTM PowerTrenchTM QSTM Quiet SeriesTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 TinyLogicTM

UHCTM VCXTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Preliminary

First Production

No Identification Needed

Full Production

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area 175 C Operating Temperature Lower Leakage Current : 10 µ A (Max.) @ VDS = 100V Lower RDS(ON) : 0.092 (Typ.)


IRF530A
BVDSS = 100 V RDS(on) = 0.11 ID = 14 A
TO-220

1 2 3

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Continuous Drain Current (TC=25 C)


Value 100 14 9.9
1 O


Units V A A V mJ A mJ V/ns W W/ C


Continuous Drain Current (TC=100 C) Drain Current-Pulsed Gate-to-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Total Power Dissipation (TC=25 C )


56 + 20 _ 261 14 5.5 6.5 55 0.36 - 55 to +175

O 1 O 1 O 3 O
2

Linear Derating Factor Operating Junction and Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5-seconds



C

300

Thermal Resistance
Symbol R JC R CS R JA Characteristic Junction-to-Case Case-to-Sink Junction-to-Ambient Typ. -0.5 -Max. 2.74 -62.5


Units
C /W

Rev. B

©1999 Fairchild Semiconductor Corporation

IRF530A


N-CHANNEL POWER MOSFET

Electrical Characteristics (TC=25 C unless otherwise specified)
Symbol BVDSS BV/ TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd Characteristic Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coeff. Gate Threshold Voltage Gate-Source Leakage , Forward Gate-Source Leakage , Reverse Drain-to-Source Leakage Current Static Drain-Source On-State Resistance Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain("Miller") Charge Min. Typ. Max. Units 100 -2.0 -----------------0.11 ------10.25 610 150 62 13 14 55 36 27 4.5 12.8 --4.0 100 -100 10 100 0.11 -790 175 72 40 40 110 80 36 --nC ns pF µA V


Test Condition VGS=0V,ID=250 µA See Fig 7 VDS=5V,ID=250 µA

V/ C ID=250 µA V nA VGS=20V VGS=-20V VDS=100V

VDS=80V,TC=150 C VGS=10V,ID=7A VDS=40V,ID=7A
4 O 4 O



VGS=0V,VDS=25V,f =1MHz See Fig 5 VDD=50V,ID=14A, RG=12 See Fig 13 VDS=80V,VGS=10V, ID=14A See Fig 6 & Fig 12
4 5 OO 4 5 OO

Source-Drain Diode Ratings and Characteristics
Symbol IS ISM VSD trr Qrr Characteristic Continuous Source Current Pulsed-Source Current Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
1 O
4 O

Min. Typ. Max. Units --------109 0.41 14 56 1.5 --A V ns ¥ìC

Test Condition Integral reverse pn-diode in the MOSFET TJ=25 C ,IS=14A,VGS=0V TJ=25 C ,IF=14A diF/dt=100A/ µs
4 O


Notes ; 1 Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature O 2 O L=2mH, I AS=14A, VDD=25V, RG=27 , Starting T J =25 oCo 3 _ _ _ O ISD < 14A, di/dt < 350A/µs, VDD< BVDSS , Starting T J =25 C _ s, 4 O Pulse Test : Pulse Width = 250 µ Duty Cycle <2% 5 Essentially Independent of Operating Temperature O

N-CHANNEL POWER MOSFET
Fig 1. Output Characteristics
VGS 15V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V

IRF530A
Fig 2. Transfer Characteristics
[A] ID , Drain Current
101

ID , Drain Current

[A]
101

Top :

175 oC 100 25 oC @ Notes : 1. V = 0 V GS - 55 oC 2. V = 40 V DS 3. 250 µs Pulse Test 6 8 10

10

0

@ Notes : 1. 250 µs Pulse Test 2. T = 25 oC C 100 101

10-1

10-1

2

4

VDS , Drain-Source Voltage [V] [A]

VGS , Gate-Source Voltage [V]

Fig 3. On-Resistance vs. Drain Current
RDS(on) , [ ] Drain-Source On-Resistance
02 .0

Fig 4. Source-Drain Diode Forward Voltage

01 .5

VGS = 10 V

IDR , Reverse Drain Current

11 0

01 .0

VGS = 20 V 00 .5 @ N t : TJ = 2 oC oe 5 00 .0 0 15 30 45 6 0

10 0 @Nts: oe 1 VGS = 0 V . 2 2 0 µs P l e T s . 5 us et 08 . 10 . 12 . 14 . 16 . 18 . 20 . 22 .

1 5 oC 7 2 oC 5 1 -1 0 04 . 06 .

ID , Drain Current [A]

VSD , Source-Drain Voltage [V]

Fig 5. Capacitance vs. Drain-Source Voltage
10 00 C iss 70 5 Ciss= Cgs+ C ( Cds= s o t d ) hre gd Coss= Cds+ C gd Crss= Cgd

Fig 6. Gate Charge vs. Gate-Source Voltage
[V]
VDS = 2 V 0 1 0 V =5 V 0 DS VDS = 8 V 0

[pF]

C oss 50 0 @Nts: oe 1 VGS = 0 V . 2 f=1Mz . H

VGS , Gate-Source Voltage

Capacitance

5

C rss 20 5

@ N t s : ID = 1 . A oe 40 0 0 5 1 0 1 5 2 0 2 5 3 0

00 10

1 10

VDS , Drain-Source Voltage [V]

QG , Total Gate Charge [nC]

IRF530A
BVDSS , (Normalized) Drain-Source Breakdown Voltage

N-CHANNEL POWER MOSFET
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized) Drain-Source On-Resistance
3.0

Fig 7. Breakdown Voltage vs. Temperature
1.2

2.5

1.1

2.0

1.0

1.5

1.0 @ Notes : 1. V = 10 V GS 2. I = 7.0 A D

0.9

@ Notes : 1. V = 0 V GS 2. I = 250 µA D

0.5

0.8 -75

-50

-25

0

25

50

75

100

125

150

175

200

0.0 -75

-50

-25

0

25

50

75

100

125

150

175

200

TJ , Junction Temperature [ oC]

TJ , Junction Temperature [ oC]

Fig 9. Max. Safe Operating Area
[A]
2 10

Fig 10. Max. Drain Current vs. Case Temperature
15

Operation in This Area is Limited by R DS(on) 10 µs 100 µs 1 ms 10 ms DC

[A] ID , Drain Current
12 9 6 3 102 0 25

ID , Drain Current

1 10

10

0

@ Notes : 1. T = 25 oC C 2. T = 175 oC J 3. Single Pulse

10-1 0 10

1 10

50

75

100

125

150

175

VDS , Drain-Source Voltage [V]

Tc , Case Temperature [ oC]

Fig 11. Thermal Response
Thermal Response

D=0.5 100 0.2 0.1 0.05 10- 1 0.02 0.01 single pulse @ Notes : 1. Z J C (t)=2.74


o C/W

Max.

2. Duty Factor, D=t /t2 1 3. TJ M -TC =PD M *Z J C (t)

Z JC(t) ,

PDM t1 t2



10- 5

10- 4

10- 3

10- 2

10- 1

100

101

t 1 , Square Wave Pulse Duration

[sec]

N-CHANNEL POWER MOSFET
Fig 12. Gate Charge Test Circuit & Waveform

IRF530A

" Current Regulator "
50K 12V 200nF 300nF

Same Type as DUT

VGS Qg
10V

VDS VGS DUT
3mA

Qgs

Qgd

R1
Current Sampling (I G) Resistor

R2
Current Sampling (I D) Resistor

Charge

Fig 13. Resistive Switching Test Circuit & Waveforms

RL Vout Vin RG DUT 10V Vin
10%

Vout VDD
( 0.5 rated V DS )

90%

td(on) t on

tr

td(off) t off

tf

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

LL VDS
Vary tp to obtain required peak ID

BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD BVDSS IAS C VDD VDD
tp

ID

RG DUT 10V
tp

ID (t) VDS (t) Time

IRF530A
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

N-CHANNEL POWER MOSFET

DUT

+ VDS --

IS L Driver RG VGS
Same Type as DUT

VGS

VDD

· dv/dt controlled by "RG" · IS controlled by Duty Factor "D"

VGS ( Driver )

Gate Pulse Width D = -------------------------Gate Pulse Period

10V

IFM , Body Diode Forward Current

IS ( DUT ) IRM

di/dt

Body Diode Reverse Current

VDS ( DUT )

Body Diode Recovery dv/dt

Vf

VDD

Body Diode Forward Voltage Drop

TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E2CMOSTM FACTTM FACT Quiet SeriesTM FAST® FASTrTM GTOTM HiSeCTM
DISCLAIMER

ISOPLANARTM MICROWIRETM POPTM PowerTrenchTM QSTM Quiet SeriesTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 TinyLogicTM

UHCTM VCXTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Preliminary

First Production

No Identification Needed

Full Production

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area 175 C Operating Temperature Lower Leakage Current : 10 µ A (Max.) @ VDS = 100V Lower RDS(ON) : 0.041 (Typ.)


IRF540A
BVDSS = 100 V RDS(on) = 0.052 ID = 28 A
TO-220

1 2 3

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Continuous Drain Current (TC=25 C)


Value 100 28 19.8
1 O


Units V A A V mJ A mJ V/ns W W/ C


Continuous Drain Current (TC=100 C) Drain Current-Pulsed Gate-to-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Total Power Dissipation (TC=25 C )


110 + 20 _ 523 28 10.7 6.5 107 0.71 - 55 to +175

O 1 O 1 O 3 O
2

Linear Derating Factor Operating Junction and Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5-seconds



C

300

Thermal Resistance
Symbol R JC R CS R JA Characteristic Junction-to-Case Case-to-Sink Junction-to-Ambient Typ. -0.5 -Max. 1.4 -62.5


Units

C /W

Rev. B

©1999 Fairchild Semiconductor Corporation

IRF540A


N-CHANNEL POWER MOSFET

Electrical Characteristics (TC=25 C unless otherwise specified)
Symbol BVDSS BV/ TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd Characteristic Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coeff. Gate Threshold Voltage Gate-Source Leakage , Forward Gate-Source Leakage , Reverse Drain-to-Source Leakage Current Static Drain-Source On-State Resistance Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain("Miller") Charge Min. Typ. Max. Units 100 -2.0 -----------------0.11 ------22.56 325 148 18 18 90 56 60 10.8 27.9 --4.0 100 -100 10 100 0.052 -380 170 50 50 180 120 78 --nC ns µA pF V V C V nA


Test Condition VGS=0V,ID=250 µ A ID=250 µ A See Fig 7 VDS=5V,ID=250 µA VGS=20V VGS=-20V VDS=100V VDS=80V,TC=150 C VGS=10V,ID=14A VDS=40V,ID=14A
4 O 4 O


1320 1710

VGS=0V,VDS=25V,f =1MHz See Fig 5 VDD=50V,ID=28A, RG=9.1 See Fig 13 VDS=80V,VGS=10V, ID=28A See Fig 6 & Fig 12
4 5 OO 4 5 OO

Source-Drain Diode Ratings and Characteristics
Symbol IS ISM VSD trr Qrr Characteristic Continuous Source Current Pulsed-Source Current Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
1 O
4 O

Min. Typ. Max. Units --------132 0.63 28 110 1.5 --A V ns µC

Test Condition Integral reverse pn-diode in the MOSFET TJ=25 C ,IS=28A,VGS=0V TJ=25 C ,IF=28A diF/dt=100A/ µs
4 O


Notes ; 1 Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature O 2 O L=1mH, I AS=28A, VDD=25V, RG=27 , Starting T J =25 oCo 3 _ _ _ O ISD < 28A, di/dt < 400A/ µs, V DD< BVDSS , Starting T J =25 C _ s, 4 O Pulse Test : Pulse Width = 250 µ Duty Cycle <2% 5 Essentially Independent of Operating Temperature O

N-CHANNEL POWER MOSFET
Fig 1. Output Characteristics
102
VGS 15V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V

IRF540A
Fig 2. Transfer Characteristics
102

[A]

ID , Drain Current

ID , Drain Current

[A]

Top :

175 oC

101

101 25 oC @ Notes : 1. V = 0 V GS 2. V = 40 V DS 3. 250 µs Pulse Test

100 10-1 100

@ Notes : 1. 250 µs Pulse Test 2. T = 25 oC C 101

- 55 oC

100

2

4

6

8

10

VDS , Drain-Source Voltage [V] [A]

VGS , Gate-Source Voltage [V]

Fig 3. On-Resistance vs. Drain Current
RDS(on) , [ ] Drain-Source On-Resistance
00 .8

Fig 4. Source-Drain Diode Forward Voltage
12 0

00 .6

VGS = 10 V

00 .4

IDR , Reverse Drain Current

11 0

VGS = 20 V 00 .2 = 2 oC 5 10 2

1 5 oC 7 2 oC 5 10 0 04 .

@Nts: oe 1 VGS = 0 V . 2 2 0 µs P l e T s . 5 us et 10 . 12 . 14 . 16 . 18 . 20 . 22 . 24 .

@ N t : TJ oe 00 .0 0 30 60 90

06 .

08 .

ID , Drain Current [A]

VSD , Source-Drain Voltage [V]

Fig 5. Capacitance vs. Drain-Source Voltage
20 50 Ciss= Cgs+ C ( Cds= s o t d ) hre gd Coss= Cds+ C gd

Fig 6. Gate Charge vs. Gate-Source Voltage
[V]

[pF]

VGS , Gate-Source Voltage

20 00 C iss 10 50 C oss 10 00 C rss 50 0

Crss= Cgd

1 0

VDS = 2 V 0 0 VDS = 5 V VDS = 8 V 0

Capacitance

@Nts: oe 1 VGS = 0 V . 2 f=1Mz . H

5

@ N t s : ID = 8 0 A oe 2. 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

00 10

1 10

VDS , Drain-Source Voltage [V]

QG , Total Gate Charge [nC]

IRF540A
BVDSS , (Normalized) Drain-Source Breakdown Voltage

N-CHANNEL POWER MOSFET
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized) Drain-Source On-Resistance
3.0

Fig 7. Breakdown Voltage vs. Temperature
1.2

2.5

1.1

2.0

1.0

1.5

1.0 @ Notes : 1. V = 10 V GS 2. I = 14.0 A D

0.9

@ Notes : 1. V = 0 V GS 2. I = 250 µA D

0.5

0.8 -75

-50

-25

0

25

50

75

100

125

150

175

200

0.0 -75

-50

-25

0

25

50

75

100

125

150

175

200

TJ , Junction Temperature [ oC]

TJ , Junction Temperature [ oC]

Fig 9. Max. Safe Operating Area
3 10

Fig 10. Max. Drain Current vs. Case Temperature
30

[A]

Operation in This Area is Limited by R DS(on)
2 10

[A]
25 10 µs 100 µs 1 ms 10 ms DC

ID , Drain Current

ID , Drain Current

20

1 10

15

10

0 10

@ Notes : 1. T = 25 oC C 2. T = 175 oC J 3. Single Pulse

5

10-1 0 10

1 10

102

0 25

50

75

100

125

150

175

VDS , Drain-Source Voltage [V]

Tc , Case Temperature [ oC]

Fig 11. Thermal Response
Thermal Response
100 D=0.5 @ Notes : 1. Z J C (t)=1.4 o C/W Max. 2. Duty Factor, D=t /t2 1 3. TJ M -TC =PD M *Z J C (t) 0.05 0.02 0.01 single pulse

0.2 0.1 10- 1

Z JC(t) ,

PDM t1 t2



10- 2 10- 5

10- 4

10- 3

10- 2

10- 1

100

101

t 1 , Square Wave Pulse Duration

[sec]

N-CHANNEL POWER MOSFET
Fig 12. Gate Charge Test Circuit & Waveform

IRF540A

" Current Regulator "
50K 12V 200nF 300nF

Same Type as DUT

VGS Qg
10V

VDS VGS DUT
3mA

Qgs

Qgd

R1
Current Sampling (I G) Resistor

R2
Current Sampling (I D) Resistor

Charge

Fig 13. Resistive Switching Test Circuit & Waveforms

RL Vout Vin RG DUT 10V Vin
10%

Vout VDD
( 0.5 rated V DS )

90%

td(on) t on

tr

td(off) t off

tf

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

LL VDS
Vary tp to obtain required peak ID

BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD BVDSS IAS C VDD VDD
tp

ID

RG DUT 10V
tp

ID (t) VDS (t) Time

IRF540A
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

N-CHANNEL POWER MOSFET

DUT

+ VDS --

IS L Driver RG VGS
Same Type as DUT

VGS

VDD

· dv/dt controlled by "RG" · IS controlled by Duty Factor "D"

VGS ( Driver )

Gate Pulse Width D = -------------------------Gate Pulse Period

10V

IFM , Body Diode Forward Current

IS ( DUT ) IRM

di/dt

Body Diode Reverse Current

VDS ( DUT )

Body Diode Recovery dv/dt

Vf

VDD

Body Diode Forward Voltage Drop

TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E2CMOSTM FACTTM FACT Quiet SeriesTM FAST® FASTrTM GTOTM HiSeCTM
DISCLAIMER

ISOPLANARTM MICROWIRETM POPTM PowerTrenchTM QSTM Quiet SeriesTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 TinyLogicTM

UHCTM VCXTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Preliminary

First Production

No Identification Needed

Full Production

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area 175 C Operating Temperature Lower Leakage Current : 10 µA (Max.) @ VDS = 100V Lower RDS(ON) : 0.032 (Typ.)


IRF550A
BVDSS = 100 V RDS(on) = 0.04 ID = 40 A
TO-220

1 2 3

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Continuous Drain Current (TC=25 C)


Value 100 40 28.3
1 O


Units V A A V mJ A mJ V/ns W W/ C


Continuous Drain Current (TC=100 C) Drain Current-Pulsed Gate-to-Source Voltage Single Pulsed Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Total Power Dissipation (TC=25 C)


160 + 20 _ 640 40 16.7 6.5 167 1.11 - 55 to +175

O 1 O 1 O 3 O
2

Linear Derating Factor Operating Junction and Storage Temperature Range Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5-seconds



C

300

Thermal Resistance
Symbol R JC R CS R JA Characteristic Junction-to-Case Case-to-Sink Junction-to-Ambient Typ. -0.5 -Max. 0.9 -62.5


Units

C /W

Rev. B

©1999 Fairchild Semiconductor Corporation

IRF550A


N-CHANNEL POWER MOSFET

Electrical Characteristics (TC=25 C unless otherwise specified)
Symbol BVDSS BV/ TJ VGS(th) IGSS IDSS RDS(on) gfs Ciss Coss Crss td(on) tr td(off) tf Qg Qgs Qgd Characteristic Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coeff. Gate Threshold Voltage Gate-Source Leakage , Forward Gate-Source Leakage , Reverse Drain-to-Source Leakage Current Static Drain-Source On-State Resistance Forward Transconductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate-Source Charge Gate-Drain("Miller") Charge Min. Typ. Max. Units 100 -2.0 -----------------0.11 ------27.44 420 185 17 20 80 45 75 13.2 34.8 --4.0 100 -100 10 100 0.04 -485 215 50 50 160 100 97 --nC ns µA pF V V/ C V nA


Test Condition VGS=0V,ID=250 µA ID=250µ A See Fig 7 VDS=5V,ID=250 µA VGS=20V VGS=-20V VDS=100V VDS=80V,TC=150 C VGS=10V,ID=20A VDS=40V,ID=20A
4 O 4 O


1750 2270

VGS=0V,VDS=25V,f =1MHz See Fig 5 VDD=50V,ID=40A, RG=6.2 See Fig 13 VDS=80V,VGS=10V, ID=40A See Fig 6 & Fig 12
4 5 OO 4 5 OO

Source-Drain Diode Ratings and Characteristics
Symbol IS ISM VSD trr Qrr Characteristic Continuous Source Current Pulsed-Source Current Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge
1 O
4 O

Min. Typ. Max. Units --------135 0.65 40 160 1.6 --A V ns µC

Test Condition Integral reverse pn-diode in the MOSFET TJ=25 C ,IS=40A,VGS=0V TJ=25 C ,IF=40A diF/dt=100A/ µs
4 O


Notes ; 1 Repetitive Rating : Pulse Width Limited by Maximum Junction Temperature O 2 O L=0.6mH, I AS=40A, VDD=25V, RG=27 , Starting T J =25ooC 3 _ _ _ O ISD < 40A, di/dt < 470A/ µs, VDD< BVDSS , Starting T J =25 C _ s, 4 O Pulse Test : Pulse Width = 250 µ Duty Cycle <2% 5 Essentially Independent of Operating Temperature O

N-CHANNEL POWER MOSFET
Fig 1. Output Characteristics
[A] [A]
102
VGS Top : 15V 10 V 8.0 V 7.0 V 6.0 V 5.5 V 5.0 V Bottom : 4.5 V

IRF550A
Fig 2. Transfer Characteristics
102

ID , Drain Current

ID , Drain Current

175 oC

10

1

101 25 oC @ Notes : 1. V = 0 V GS 2. V = 40 V DS 3. 250 µs Pulse Test 6 8 10

100

@ Notes : 1. 250 µs Pulse Test 2. T = 25 oC C 100 101

- 55 oC 100

10-1

2

4

VDS , Drain-Source Voltage [V] [A]

VGS , Gate-Source Voltage [V]

Fig 3. On-Resistance vs. Drain Current
RDS(on) , [ ] Drain-Source On-Resistance
00 .6

Fig 4. Source-Drain Diode Forward Voltage
12 0

00 .5

VGS = 10 V

00 .4

00 .3 V = 20 V GS

IDR , Reverse Drain Current

11 0

00 .2

00 .1 @ N t : TJ = 2 oC oe 5 00 .0 0 25 50 75 10 0 15 2 10 5 15 7

1 5 oC 7 2 C 5 10 0 04 . 06 . 08 . 10 12 . . 14 . 16 .
o

@Nts: oe 1 VGS = 0 V . 2 2 0 µs P l e T s . 5 us et 18 . 20 . 22 . 24 26 . . 28 .

ID , Drain Current [A]

VSD , Source-Drain Voltage [V]

Fig 5. Capacitance vs. Drain-Source Voltage
30 00 Ciss= Cgs+ C ( Cds= s o t d ) hre gd Coss= Cds+ C gd Crss= Cgd

Fig 6. Gate Charge vs. Gate-Source Voltage
[V]
VDS = 2 V 0 0 V =5 V DS VDS = 8 V 0

[pF]

Capacitance

20 00 C oss @Nts: oe 1 VGS = 0 V . 2 f=1Mz . H

VGS , Gate-Source Voltage

C iss

1 0

5

10 00

C rss

@Nts:I =00A oe D 4. 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

00 10

1 10

VDS , Drain-Source Voltage [V]

QG , Total Gate Charge [nC]

IRF550A
BVDSS , (Normalized) Drain-Source Breakdown Voltage

N-CHANNEL POWER MOSFET
Fig 8. On-Resistance vs. Temperature
RDS(on) , (Normalized) Drain-Source On-Resistance
3.0

Fig 7. Breakdown Voltage vs. Temperature
1.2

2.5

1.1

2.0

1.0

1.5

1.0 @ Notes : 1. V = 10 V GS 2. I = 20.0 A D

0.9

@ Notes : 1. V = 0 V GS 2. I = 250 µA D

0.5

0.8 -75

-50

-25

0

25

50

75

100

125

150

175

200

0.0 -75

-50

-25

0

25

50

75

100

125

150

175

200

TJ , Junction Temperature [ oC]

TJ , Junction Temperature [ oC]

Fig 9. Max. Safe Operating Area
3 10

Fig 10. Max. Drain Current vs. Case Temperature
50

[A]

Operation in This Area is Limited by R DS(on)
2 10

[A]
100 µs 1 ms 10 ms

ID , Drain Current

ID , Drain Current

10 µs

40

30

1 10

DC

20

0 10

@ Notes : 1. T = 25 oC C 2. T = 175 oC J 3. Single Pulse

10

10-1 0 10

1 10

102

0 25

50

75

100

125

150

175

VDS , Drain-Source Voltage [V]

Tc , Case Temperature [ oC]

Fig 11. Thermal Response
Thermal Response
100 D=0.5 0.2 10- 1 0.1 0.05 0.02 0.01 10- 2 10- 5 10- 4 10- 3 10- 2 10- 1 100 101 @ Notes : 1. Z J C (t)=0.9 o C/W Max. 2. Duty Factor, D=t /t2 1 3. TJ M -TC =PD M *Z J C (t)

Z JC(t) ,

PDM
single pulse

t1 t2



t 1 , Square Wave Pulse Duration

[sec]

N-CHANNEL POWER MOSFET
Fig 12. Gate Charge Test Circuit & Waveform

IRF550A

" Current Regulator "
50K 12V 200nF 300nF

Same Type as DUT

VGS Qg
10V

VDS VGS DUT
3mA

Qgs

Qgd

R1
Current Sampling (I G) Resistor

R2
Current Sampling (I D) Resistor

Charge

Fig 13. Resistive Switching Test Circuit & Waveforms

RL Vout Vin RG DUT 10V Vin
10%

Vout VDD
( 0.5 rated V DS )

90%

td(on) t on

tr

td(off) t off

tf

Fig 14. Unclamped Inductive Switching Test Circuit & Waveforms

LL VDS
Vary tp to obtain required peak ID

BVDSS 1 EAS = ---- LL IAS2 -------------------2 BVDSS -- VDD BVDSS IAS C VDD VDD
tp

ID

RG DUT 10V
tp

ID (t) VDS (t) Time

IRF550A
Fig 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

N-CHANNEL POWER MOSFET

DUT

+ VDS --

IS L Driver RG VGS
Same Type as DUT

VGS

VDD

· dv/dt controlled by "RG" · IS controlled by Duty Factor "D"

VGS ( Driver )

Gate Pulse Width D = -------------------------Gate Pulse Period

10V

IFM , Body Diode Forward Current

IS ( DUT ) IRM

di/dt

Body Diode Reverse Current

VDS ( DUT )

Body Diode Recovery dv/dt

Vf

VDD

Body Diode Forward Voltage Drop

TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E2CMOSTM FACTTM FACT Quiet SeriesTM FAST® FASTrTM GTOTM HiSeCTM
DISCLAIMER

ISOPLANARTM MICROWIRETM POPTM PowerTrenchTM QSTM Quiet SeriesTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 TinyLogicTM

UHCTM VCXTM

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.

Preliminary

First Production

No Identification Needed

Full Production

Obsolete

Not In Production

This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Advanced Power MOSFET
FEATURES
Avalanche Rugged Technology Rugged Gate Oxide Technology Lower Input Capacitance Improved Gate Charge Extended Safe Operating Area Lower Leakage Current : 10 µA (Max.) @ VDS = 200V Low RDS(ON) : 1.169 (Typ.)
1 2 3

IRF610A
BVDSS = 200 V RDS(on) = 1.5 ID = 3.3 A
TO-220

1.Gate 2. Drain 3. Source

Absolute Maximum Ratings
Symbol VDSS ID IDM VGS EAS IAR EAR dv/dt PD TJ , TSTG TL Characteristic Drain-to-Source Voltage Co